

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#183
D

at
a

M
in

in
g

:
D

is
co

ve
ri

n
g

 a
n

d
 V

is
u

a
liz

in
g

 P
a

tt
er

n
s

w
it

h
 P

yt
h

o
n

By: Giuseppe Vettigli

INTRODUCTION

Data mining is the extraction of implicit, previously unknown, and
potentially useful information from data. It is applied in a wide range
of domains and its techniques have become fundamental for several
applications.

This Refcard is about the tools used in practical Data Mining for finding
and describing structural patterns in data using Python. In recent years,
Python has become more and more used for the development of data
centric applications thanks to the support of a large scientific computing
community and to the increasing number of libraries available for data
analysis. In particular, we will see how to:

•	 Import	and	visualize	data
•	 Classify	and	cluster	data
•	 Discover	relationships	in	the	data	using	regression	and		 	
	 correlation	measures
•	 Reduce	the	dimensionality	of	the	data	in	order	to	compress		
	 and	visualize	the	information	it	brings
•	 Analyze	structured	data

Each topic will be covered by code examples based on four of the major
Python libraries for data analysis and manipulation: numpy, matplotlib,
sklearn and networkx.

DATA IMPORTING AND VISUALIZATION

Usually, the first step of a data analysis consists of obtaining the data and
loading the data into our work environment. We can easily download data
using the following Python capability:

from urllib2 import urlopen
from contextlib import closing
url = ‘http://aima.cs.berkeley.edu/data/iris.csv’
with closing(urlopen(url)) as u, open(‘iris.csv’, ‘w’) as f:
 f.write(u.read())

In the snippet above we used the library urllib2 to access a file on the
website of the University of Berkley and saved it to the disk using the
methods of the File object provided by the standard library. The file
contains the iris dataset, which is a multivariate dataset that consists of 50
samples from each of three species of Iris flowers (Iris setosa, Iris virginica
and Iris versicolor). Each sample has four features (or variables) that are
the length and the width of sepal and petal, in centimeters.

The dataset is stored in the CSV (comma separated values) format. It is
convenient to parse the CSV file and store the information that it contains
using a more appropriate data structure. The dataset has 5 columns.
The first 4 columns contain the values of the features while the last row
represents the class of the samples. The CSV can be easily parsed using
the function genfromtxt of the numpy library:

from numpy import genfromtxt, zeros
read the first 4 columns
data = genfromtxt(‘iris.csv’,delimiter=’,’,usecols=(0,1,2,3))
read the fifth column
target = genfromtxt(‘iris.csv’,delimiter=’,’,usecols=(4),dtype=s
tr)

In the example above we created a matrix with the features and a vector
that contains the classes. We can confirm the size of our dataset looking at
the shape of the data structures we loaded:

print data.shape

(150, 4)

print target.shape

(150,)

We can also know how many classes we have and their names:

print set(target) # build a collection of unique elements
set([‘setosa’, ‘versicolor’, ‘virginica’])

An important task when working with new data is to try to understand what
information the data contains and how it is structured. Visualization helps
us explore this information graphically in such a way to gain understanding
and insight into the data.

Using the plotting capabilities of the pylab library (which is an interface to
matplotlib) we can build a bi-dimensional scatter plot which enables us
to analyze two dimensions of the dataset plotting the values of a feature
against the values of another one:

from pylab import plot, show
plot(data[target==’setosa’,0],data[target==’setosa’,2],’bo’)
plot(data[target==’versicolor’,0],data[target==’versicolor’,2],’
ro’)
plot(data[target==’virginica’,0],data[target==’virginica’,2],’
go’)
show()

This snippet uses the first and the third dimension (sepal length and sepal
width) and the result is shown in the following figure:

CONTENTS INCLUDE:

❱	Data Importing and Visualization

❱	Classifications

❱	Clustering

❱	Regression

❱	Correlation

❱	Dimensionality Reduction... and more!

Data Mining
Discovering and Visualizing Patterns with Python

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com/
mailto:info@cloudbees.com

2 Data Mining

DZone, Inc. | www.dzone.com

In the graph we have 150 points and their color represents the class; the
blue points represent the samples that belong to the specie setosa, the red
ones represent versicolor and the green ones represent virginica.

Another common way to look at data is to plot the histogram of the single
features. In this case, since the data is divided into three classes, we can
compare the distributions of the feature we are examining for each class.
With the following code we can plot the distribution of the first feature of
our data (sepal length) for each class:

from pylab import figure, subplot, hist, xlim, show
xmin = min(data[:,0])
xmax = max(data[:,0])
figure()
subplot(411) # distribution of the setosa class (1st, on the top)
hist(data[target==’setosa’,0],color=’b’,alpha=.7)
xlim(xmin,xmax)
subplot(412) # distribution of the versicolor class (2nd)
hist(data[target==’versicolor’,0],color=’r’,alpha=.7)
xlim(xmin,xmax)
subplot(413) # distribution of the virginica class (3rd)
hist(data[target==’virginica’,0],color=’g’,alpha=.7)
xlim(xmin,xmax)
subplot(414) # global histogram (4th, on the bottom)
hist(data[:,0],color=’y’,alpha=.7)
xlim(xmin,xmax)
show()

The result should be as follows:

Looking at the histograms above we can understand some characteristics
that could help us to tell apart the data according to the classes we have.
For example, we can observe that, on average, the Iris setosa flowers have
a smaller sepal length compared to the Iris virginica.

CLASSIFICATION

Classification is a data mining function that assigns samples in a dataset
to target classes. The models that implement this function are called
classifiers. There are two basic steps to using a classifier: training and
classification. Training is the process of taking data that is known to
belong to specified classes and creating a classifier on the basis of that
known data. Classification is the process of taking a classifier built with
such a training dataset and running it on unknown data to determine class
membership for the unknown samples.

The library sklearn contains the implementation of many models for
classification and in this section we will see how to use the Gaussian Naive
Bayes in order to identify iris flowers as either setosa, versicolor or virginica
using the dataset we loaded in the first section. To this end we convert the
vector of strings that contain the class into integers:

t = zeros(len(target))
t[target == ‘setosa’] = 1
t[target == ‘versicolor’] = 2
t[target == ‘virginica’] = 3

Now we are ready to instantiate and train our classifier:

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(data,t) # training on the iris dataset

The classification can be done with the predict method and it is easy to test
it with one of the sample:

print classifier.predict(data[0])

[1.]

print t[0]

1

In this case the predicted class is equal to the correct one (setosa), but it
is important to evaluate the classifier on a wider range of samples and to
test it with data not used in the training process. To this end we split the
data into train set and test set, picking samples at random from the original
dataset. We will use the first set to train the classifier and the second one to
test the classifier. The function train_test_split can do this for us:

from sklearn import cross_validation
train, test, t_train, t_test = cross_validation.train_test_
split(data, t, …
test_size=0.4, random_state=0)

The dataset have been split and the size of the test is 40% of the size of the
original as specified with the parameter test_size. With this data we can
again train the classifier and print its accuracy:

classifier.fit(train,t_train) # train
print classifier.score(test,t_test) # test

0.93333333333333335

In this case we have 93% accuracy. The accuracy of a classifier is given by
the number of correctly classified samples divided by the total number of
samples classified. In other words, it means that it is the proportion of the
total number of predictions that were correct.

Another tool to estimate the performance of a classifier is the confusion
matrix. In this matrix each column represents the instances in a predicted
class, while each row represents the instances in an actual class. Using the
module metrics it is pretty easy to compute and print the matrix:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Data Mining

DZone, Inc. | www.dzone.com

from sklearn.metrics import confusion_matrix
print confusion_matrix(classifier.predict(test),t_test)

[[16 0 0]
[0 23 3]
[0 0 18]]

In this confusion matrix we can see that all the Iris setosa and virginica
flowers were classified correctly but, of the 26 actual Iris versicolor flowers,
the system predicted that three were virginica. If we keep in mind that all
the correct guesses are located in the diagonal of the table, it is easy to
visually inspect the table for errors, since they are represented by the non-
zero values outside of the diagonal.

A function that gives us a complete report on the performance of the
classifier is also available:

from sklearn.metrics import classification_report
print classification_report(classifier.predict(test), t_test,
target_names=[‘setosa’, ‘versicolor’, ‘virginica’])
 precision recall f1-score support

 setosa 1.00 1.00 1.00 16
versicolor 1.00 0.85 0.92 27
 virginica 0.81 1.00 0.89 17

avg / total 0.95 0.93 0.93 60

Here is a summary of the measures used by the report:

•	 Precision:	the	proportion	of	the	predicted	positive	cases	that		
	 were	correct
•	 Recall	(or	also	true	positive	rate):	the	proportion	of	positive		
	 cases	that	were	correctly	identified
•	 F1-Score:	the	harmonic	mean	of	precision	and	recall

The support is just the number of elements of the given class used for the
test. However, splitting the data, we reduce the number of samples that
can be used for the training, and the results of the evaluation may depend
on a particular random choice for the pair (train set, test set). To actually
evaluate a classifier and compare it with other ones, we have to use a more
sophisticated evaluation model like Cross Validation. The idea behind the
model is simple: the data is split into train and test sets several consecutive
times and the averaged value of the prediction scores obtained with the
different sets is the evaluation of the classifier. This time, sklearn provides
us a function to run the model:

from sklearn.cross_validation import cross_val_score
cross validation with 6 iterations
scores = cross_val_score(classifier, data, t, cv=6)
print scores

[0.84 0.96 1. 1. 1. 0.96]

As we can see, the output of this implementation is a vector that contains
the accuracy obtained with each iteration of the model. We can easily
compute the mean accuracy as follows:

from numpy import mean
print mean(scores)

0.96

CLUSTERING

Often we don’t have labels attached to the data that tell us the class of
the samples; we have to analyze the data in order to group them on the
basis of a similarity criteria where groups (or clusters) are sets of similar
samples. This kind of analysis is called unsupervised data analysis. One of
the most famous clustering tools is the k-means algorithm, which we can
run as follows:

from sklearn.cluster import KMeans
kmeans = KMeans(k=3, init=’random’) # initialization
kmeans.fit(data) # actual execution

The snippet above runs the algorithm and groups the data in 3 clusters (as
specified by the parameter k). Now we can use the model to assign each
sample to one of the clusters:

c = kmeans.predict(data)

And we can evaluate the results of clustering, comparing it with the labels
that we already have using the completeness and the homogeneity score:

from sklearn.metrics import completeness_score, homogeneity_score
print completeness_score(t,c)

0.7649861514489815

print homogeneity_score(t,c)

0.7514854021988338

The completeness score approaches 1 when most of the data points that
are members of a given class are elements of the same cluster while the
homogeneity score approaches 1 when all the clusters contain almost only
data points that are member of a single class.

We can also visualize the result of the clustering and compare the
assignments with the real labels visually:

figure()
subplot(211) # top figure with the real classes
plot(data[t==1,0],data[t==1,2],’bo’)
plot(data[t==2,0],data[t==2,2],’ro’)
plot(data[t==3,0],data[t==3,2],’go’)
subplot(212) # bottom figure with classes assigned automatically
plot(data[c==1,0],data[c==1,2],’bo’,alpha=.7)
plot(data[c==2,0],data[c==2,2],’go’,alpha=.7)
plot(data[c==0,0],data[c==0,2],’mo’,alpha=.7)
show()

The following graph shows the result:

Observing the graph we see that the cluster in the bottom left corner has
been completely indentified by k-means while the two clusters on the top
have been identified with some errors.

REGRESSION

Regression is a method for investigating functional relationships among
variables that can be used to make predictions. Consider the case where
we have two variables, one is considered to be explanatory, and the other
is considered to be a dependent. We want to describe the relationship
between the variables using a model; when this relationship is expressed
with a line we have the linear regression.

In order to apply the linear regression we build a synthetic dataset
composed as described above:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Data Mining

DZone, Inc. | www.dzone.com

from numpy.random import rand
x = rand(40,1) # explanatory variable
y = x*x*x+rand(40,1)/5 # depentend variable

Now we can use the LinearRegression model that we found in the module
sklear.linear_model. This model calculates the best-fitting line for the
observed data by minimizing the sum of the squares of the vertical
deviations from each data point to the line. The usage is similar to the other
models implemented in sklearn that we have seen before:

from sklearn.linear_model import LinearRegression
linreg = LinearRegression()
linreg.fit(x,y)

And we can plot this line over the actual data points to evaluate the result:

from numpy import linspace, matrix
xx = linspace(0,1,40)
plot(x,y,’o’,xx,linreg.predict(matrix(xx).T),’--r’)
show()

The plot should be as follows:

In this graph we can observe that the line goes through the center of our
data and enables us to identify the increasing trend.

We can also quantify how the model fits the original data using the mean
squared error:

from sklearn.metrics import mean_squared_error
print mean_squared_error(linreg.predict(x),y)

0.01093512327489268

This metric measures the expected squared distance between the
prediction and the true data. It is 0 when the prediction is perfect.

CORRELATION

We study the correlation to understand whether and how strongly pairs of
variables are related. This kind of analysis helps us in locating the critically
important variables on which others depend. The best correlation measure
is the Pearson product-moment correlation coefficient. It’s obtained by
dividing the covariance of the two variables by the product of their standard
deviations. We can compute this index between each pair of variables for
the iris dataset as follows:

from numpy import corrcoef
corr = corrcoef(data.T) # .T gives the transpose
print corr

[[1. -0.10936925 0.87175416 0.81795363]
 [-0.10936925 1. -0.4205161 -0.35654409]
 [0.87175416 -0.4205161 1. 0.9627571]
 [0.81795363 -0.35654409 0.9627571 1.]]

The function corrcoef returns a symmetric matrix of correlation coefficients
calculated from an input matrix in which rows are variables and columns
are observations. Each element of the matrix represents the correlation
between two variables.

Correlation is positive when the values increase together. It is negative
when one value decreases as the other increases. In particular we have
that 1 is a perfect positive correlation, 0 is no correlation and -1 is a perfect
negative correlation.

When the number of variables grows we can conveniently visualize the
correlation matrix using a pseudocolor plot:

from pylab import pcolor, colorbar, xticks, yticks
from numpy import arange
pcolor(corr)
colorbar() # add
arranging the names of the variables on the axis
xticks(arange(0.5,4.5),[‘sepal length’, ‘sepal width’, ‘petal
length’, ‘petal width’],rotation=-20)
yticks(arange(0.5,4.5),[‘sepal length’, ‘sepal width’, ‘petal
length’, ‘petal width’],rotation=-20)
show()

The following image shows the result:

Looking at the color bar on the right of the figure, we can associate the
color on the plot to a numerical value. In this case red is associated with
high values of positive correlation and we can see that the strongest
correlation in our dataset is between the variables “petal width” and “petal
length.”

DIMENSIONALITY REDUCTION

In the first section we saw how to visualize two dimensions of the iris
dataset. With that method alone, we have a view of only a part of the
dataset. Since the maximum number of dimensions that we can plot at the
same time is 3, to have a global view of the data it’s necessary to embed
the whole data in a number of dimensions that we can visualize. This
embedding process is called dimensionality reduction. One of the most
famous techniques for dimensionality reduction is the Principal Component
Analysis (PCA). This technique transforms the variables of our data into
an equal or smaller number of uncorrelated variables called principal
components (PCs).

This time, sklearn provides us all we need to perform our analysis:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)

In the snippet above we instantiated a PCA object which we can use to
compute the first two PCs. The transform is computed as follows:

pcad = pca.fit_transform(data)

And we can plot the result as usual:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Data Mining

DZone, Inc. | www.dzone.com

plot(pcad[target==’setosa’,0],pcad[target==’setosa’,1],’bo’)
plot(pcad[target==’versicolor’,0],pcad[target==’versicolor’,1],’
ro’)
plot(pcad[target==’virginica’,0],pcad[target==’virginica’,1],’
go’)
show()

The result is as follows:

We notice that the figure above is similar to the one proposed in the first
section, but this time the separation between the versicolor specie (in red)
and the virginica specie (in green) is more clear.

The PCA projects the data into a space where the variance is maximized
and we can determine how much information is stored in the PCs looking
at the variance ratio:

print pca.explained_variance_ratio_
[0.92461621 0.05301557]

Now we know that the first PC accounts for 92% of the information of the
original dataset while the second one accounts for the remaining 5%. We
can also print how much information we lost during the transformation
process:

print 1-sum(pca.explained_variance_ratio_)
0.0223682249752

In this case we lost 2% of the information.

At this point, we can apply the inverse transformation to get the original
data back:

data_inv = pca.inverse_transform(pcad)

Arguably, the inverse transformation doesn’t give us exactly the original
data due to the loss of information. We can estimate how much the result
of the inverse is likely to the original data as follows:

print abs(sum(sum(data - data_inv)))

2.8421709430404007e-14

We have that the difference between the original data and the
approximation computed with the inverse transform is close to zero.

It’s interesting to note how much information we can preserve by varying
the number of principal components:

for i in range(1,5):
 pca = PCA(n_components=i)
 pca.fit(data)
 print sum(pca.explained_variance_ratio_) * 100,’%’

The output of this snippet is the following:

92.4616207174 %
97.7631775025 %
99.481691455 %
100.0 %

The more PCs we use the more the information is preserved, but this
analysis helps us to understand how many components we can use to
save a certain amount of information. For example, from the output of the
snippet above we can see that on the Iris dataset we can save almost 100%
of the information just by using three PCs.

MINING NETWORKS

Often, the data that we have to analyze is structured in the form of
networks, for example our data could describe the friendships between a
group of facebook users or the coauthorships of papers between scientists.
Here, the objects to study are described by nodes and by edges that
describe connections between them.

In this section we will see the basic steps for the analysis of this kind of
data using networkx, which is a library that helps us in the creation, the
manipulation and the study of the networks. In particular, we will see how
to use a centrality measure in order to build a meaningful visualization
of the data and how to find a group of nodes where the connections are
dense.

Using networkx, we can easily import the most common formats used for
the description of structured data:

G = nx.read_gml(‘lesmiserables.gml’,relabel=True)

In the code above we imported the coappearance network of characters
in the novel Les Miserables, freely available at https://gephi.org/datasets/
lesmiserables.gml.zip, in the GML format. We can also visualize the loaded
network with the following command:

nx.draw(G,node_size=0,edge_color=’b’,alpha=.2,font_size=7)

The result should be as follows:

In this network each node represents a character of the novel and the
connection between two characters represents the coappearance in the
same chapter. It’s easy to see that the graph is not really helpful. Most of
the details of the network are still hidden and it’s impossible to understand
which are the most important nodes. In order to gain some insights about
our data we can study the degree of the nodes. The degree of a node is
considered one of the simplest centrality measures and it consists of the
number of connections a node has. We can summarize the degrees
distribution of a network looking at its maximum, minimum, median, first
quartile and third quartile:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Data Mining

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

deg = nx.degree(G)
from numpy import percentile, mean, median
print min(deg.values())
print percentile(deg.values(),25) # computes the 1st quartile
print median(deg.values())
print percentile(deg.values(),75) # computes the 3rd quartile
print max(deg.values())

From this analysis we can decide to observe only the nodes with a degree
higher than 10. In order to display only those nodes we can create a new
graph with only the nodes that we want to visualize:

Gt = G.copy()
dn = nx.degree(Gt)
for n in Gt.nodes():
 if dn[n] <= 10:
 Gt.remove_node(n)
nx.draw(Gt,node_size=0,edge_color=’b’,alpha=.2,font_size=12)

The image below shows the result:

This time the graph is more readable. It makes us able to observe the most
relevant characters and their relationships.

It is also interesting to study the network through the identification of its
cliques. A clique is a group where a node is connected to all the other ones
and a maximal clique is a clique that is not a subset of any other clique
in the network. We can find the all maximal cliques of the our network as
follows:

from networkx import find_cliques
cliques = list(find_cliques(G))

And we can print the biggest clique with the following command:

print max(cliques, key=lambda l: len(l))
[u’Joly’, u’Gavroche’, u’Bahorel’, u’Enjolras’, u’Courfeyrac’,
u’Bossuet’, u’Combeferre’, u’Feuilly’, u’Prouvaire’,
u’Grantaire’]

We can see that most of the names in the list are the same of the cluster of
nodes on the right of the graph.

Other Resources
•	 IPython:	interactive	shell;	browser-based	notebook	
•	 NLTK	(Natural	Language	Toolkit):	modules,	data,		 	
	 documentation	for	natural	language	processing.	
•	 OpenCV:	popular	library	for	image	processing	and	computer		
	 vision.	
•	 Pandas:	data	structures	for	working	with	“relational”	or		 	
	 “labeled”	data	
•	 Scipy:	huge	collection	of	algorithms	and	facilities	for	advanced		
	 math,	signal	processing,	optimization	and	statistics	(built	on		
	 numpy)
•	 Statsmodels:	rich	module	for	descriptive	statistics,	statistical		
	 tests,	plotting	functions,	result	statistics	

This book introduces how to manipulate, process,
and clean data using Python. It is written by the
author of one of the most used libraries for data
manipulation (Pandas) and guides the reader with a
lot of practical cases studies. It is ideal for any level
of programmer, analysts and researcher and it is
suitable for who already knows Python and for who
already knows Python programmers but is new to
scientific computing and data analysis.

									Buy	Here

Giuseppe Vettigli works at Cybernetics Institute of the
Italian National Research Council. His research is focused
on Artificial Intelligence and he combines Data Mining and
Software Engineering in order to design new models and
applications for the analysis of structured and unstructured
data. You can check his blog about Python programming
and data visualization at http://glowingpython.blogspot.it
or follow him on Twitter https://twitter.com/JustGlowing.

A B O U T T H E A U T H O R R E C O M M E N D E D B O O K

C++
Cypher
Clean Code
Subversion

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://ipython.org/
http://nltk.org/
http://nltk.org/
http://opencv.willowgarage.com/
http://opencv.willowgarage.com/
http://pandas.pydata.org/
http://pandas.pydata.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/
http://shop.oreilly.com/product/0636920023784.do
https://twitter.com/JustGlowing
http://shop.oreilly.com/product/0636920023784.do

