
Syntax/Control Structures (Version: 9 Nov 2013) markthegraph.blogspot.com.au © 2012-13 Mark Graph

R Cheat Sheet: Brief Introduction to Language Elements and Control Structures

Comments

from the hash to the end of the line

Basic (underlying) data-types
1) logical – Boolean TRUE/FALSE
2) integer – 32 bit signed integer number
3) double – double precision real number
4) character – text in quotes – strings
5) complex – complex numbers (3+2i)
Note: integer and double of mode numeric

Common R objects
1) atomic vector – 1-N, all of only one

basic data type, can be named. R does
not have a single value object. Single
values are held in a length=1 vector.

2) list – 1-N of any R object (including
lists), list elements can have different
types, list elements can be named

3) factor – 1-N of ordinal (ordered) or
categorical (unordered) data (typically
character to integer coding)

4) data.frame 1-M rows by 1-N cols, cols is
a named list, the data for each column
is a vector/factor, rows can be named

5) matrix – numeric vector with 2
dimensions, 1-M rows by 1-N cols, rows
and cols can be named

6) array – essentially a matrix with
(typically) 3 or more dimensions

Note: While these are the most common
objects used for analysis, most things in R
are objects that can be manipulated.
Note: Some objects only contain certain
types (eg. matrix), or everything in the
object is of the same type (eg. vector)

Indexing objects
Because objects contain multiple values,
understanding indexing is critical to R:
1) x[i], x[r, c] – can select multiple
2) x[[i]], x[[r, c]] – select single
3) xi, x"i" – select single by name
a) by number: x[5]; x[1:10]; x[length(x)]
b) by logic: x[T,F,T,F]; x[!is.na(x)]
c) by name: x['me']; x$me; x[c('a', 'b')]
Note: 2-dimension indexes are x[row, col]
Trap: x[i] and x[[i]] can return very
different results from the same object

Classes
R has class mechanisms for creating more
complex data objects. Common classes
include Date, ts (time series data), lm
(the results of a regression linear model).
These are often used like other objects.

Objects and variables
Objects can be assigned to variables: <-
Note: objects have mode/type, not variables
Note: if an object has a rule your code
will be quietly coerced to meet the rule:
x <- c(1, "2"); cat(x) # -> "1", "2"

Determine the nature of an object
1) typeof(x) – the R type of x
2) mode(x) – the data mode of x
3) storage.mode(x) – the storage mode of x
4) class(x) – the class of x
5) attributes(x) – the attributes of x

(common attributes: 'class' and 'dim')
6) str(x) – print a summary structure of x
7) dput(x) – print full text R code for x

NULL v NA
1) NULL is an object, typically used to

mean the variable contains no object.
2) NA is a value that means: missing data

item here
x <- NULL; is.null(x); y <- NA; is.na(y)
length(NULL); length(NA) # -> 0, 1
Trap: can have a list of NULLs but not a
vector of NULLs. Can have a vector of NAs.

Other non-number numbers (NA the first)
1) Inf # positive infinity
2) -Inf # negative infinity
3) NaN # not a number
 1/0; 0/0 # -> Inf, NaN

Operators
+, -, *, / # addition, subtraction,
 # multiplication, division
^ or ** # exponentiation
%% # modulus
%/% # integer division
%in% # membership
: # sequence generation
<, <=, ==, >=, >, != # Boolean comparative
|, || # (vectorised/not vec)
&, && # (vectorised/not vec)
Note: with few exceptions (&&, || and :)
operators take vectors and return vectors.

Flow control structures
1) if (cond) expr
2) if (cond) expr1 else expr2
3) for (var in seq) expr
4) while (cond) expr
5) repeat expr
Note: break exits a loop, next moves flow
to the start of the loop with the next var
Note: expressions typically enclosed in {}
But single expressions do not need the {}
Multiple expression on a line ; separated

Flow control functions
1) the vectorised if statement:
 result <- ifelse(cond, expr1, expr2)
2) the switch statement (not vectorised):
 switch(expr.string,
 case1 = expr1,
 case2 = expr2,
 default = expr 3 # default optional
)
 expr.string evaluates to a char string
 Note: cases not enclosed in quotes.

