Tables
Foreword
- Output options: ‘pygments’ syntax, the ‘readable’ theme.
- Snippets and results.
Markdown tables¶
Example 1¶
1 2 3 4 5 6 7 |
|
Right | Left | Default | Center |
---|---|---|---|
12 | 12 | 12 | 12 |
123 | 123 | 123 | 123 |
1 | 1 | 1 | 1 |
Example 2¶
1 2 3 4 5 6 7 8 9 10 11 |
|
Fruit | Price | Advantages |
---|---|---|
Bananas |
$1.34 |
|
Oranges |
$2.10 |
|
The xtable
package¶
The output is in HTML.
Example 1¶
library(xtable)
# given the data in the first row
print(xtable(output,
caption = 'A test table',
align = c('l', 'c', 'r')),
type = 'html')
1st header | 2nd header | |
---|---|---|
1st row | Content A | Content B |
2nd row | Content C | Content D |
The knitr::kable
function¶
The output is in Markdown.
Example 1¶
library(knitr)
# given the data in the first row
kable(output,
caption = 'A test table',
align = c('c', 'r'))
1st header | 2nd header | |
---|---|---|
1st row | Content A | Content B |
2nd row | Content C | Content D |
We can also write knitr::kable()
without calling library(knitr)
.
The htmlTable
package¶
htmlTable on GitHub.
Example 1¶
output <-
matrix(paste('Content', LETTERS[1:16]),
ncol = 4, byrow = TRUE)
library(htmlTable)
htmlTable(output,
header = paste(c('1st', '2nd', '3rd', '4th'), 'header'),
rnames = paste(c('1st', '2nd', '3rd', '4th'), 'row'),
rgroup = c('Group A', 'Group B'),
n.rgroup = c(2,2),
cgroup = c('Cgroup 1', 'Cgroup 2†'),
n.cgroup = c(2,2),
caption = 'Basic table with both column spanners (groups) and row groups',
tfoot = '† A table footer commment')
Basic table with both column spanners (groups) and row groups | |||||
Cgroup 1 | Cgroup 2† | ||||
---|---|---|---|---|---|
1st header | 2nd header | 3rd header | 4th header | ||
Group A | |||||
1st row | Content A | Content B | Content C | Content D | |
2nd row | Content E | Content F | Content G | Content H | |
Group B | |||||
3rd row | Content I | Content J | Content K | Content L | |
4th row | Content M | Content N | Content O | Content P | |
† A table footer commment |
Example 2¶
library(htmlTable)
# given the data in the first row
htmlTable(txtRound(mx, 1),
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c('First period', 'Second period', 'Third period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Example 3¶
library(htmlTable)
# given the data in the first row
htmlTable(txtRound(mx, 1),
align = 'rrrr|r',
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c('First period', 'Second period', 'Third period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Example 4¶
library(htmlTable)
# given the data in the first row
htmlTable(txtRound(mx, 1),
col.columns = c(rep('#E6E6F0', 4),
rep('none', ncol(mx) - 4)),
align = 'rrrr|r',
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c('First period', 'Second period', 'Third period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'))
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
First period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
Second period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
Third period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Example 5¶
library(htmlTable)
# given the data in the first row
htmlTable(txtRound(mx, 1),
col.rgroup = c('none', '#FFFFCC'),
col.columns = c(rep('#EFEFF0', 4),
rep('none', ncol(mx) - 4)),
align = 'rrrr|r',
cgroup = cgroup,
n.cgroup = n.cgroup,
# I use the - the no breaking space as I don't want to have a
# row break in the row group. This adds a little space in the table
# when used together with the cspan.rgroup=1.
rgroup = c('1st period', '2nd period', '3rd period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'),
cspan.rgroup = 1)
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | ||||||||
1st period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
2nd period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
3rd period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Example 6¶
library(htmlTable)
# given the data in the first row
htmlTable(out_mx,
caption = 'Average age in Sweden counties over a period of
15 years. The Norbotten county is typically known
for having a negative migration pattern compared to
Stockholm, while Uppsala has a proportionally large
population of students.',
pos.rowlabel = 'bottom',
rowlabel='Year',
col.rgroup = c('none', '#FFFFCC'),
col.columns = c(rep('#EFEFF0', 4),
rep('none', ncol(mx) - 4)),
align = 'rrrr|r',
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c('1st period', '2nd period', '3rd period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'),
cspan.rgroup = 1)
Average age in Sweden counties over a period of 15 years. The Norbotten county is typically known for having a negative migration pattern compared to Stockholm, while Uppsala has a proportionally large population of students. | |||||||||||||||||||||||||||||
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Year | Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | |||||||
1st period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
2nd period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
3rd period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
Example 7¶
library(htmlTable)
# given the data in the first row
htmlTable(out_mx,
caption = 'Average age in Sweden counties over a period of
15 years. The Norbotten county is typically known
for having a negative migration pattern compared to
Stockholm, while Uppsala has a proportionally large
population of students.',
pos.rowlabel = 'bottom',
rowlabel = 'Year',
col.rgroup = c('none', '#FFFFCC'),
col.columns = c(rep('#EFEFF0', 4), rep('none', ncol(mx) - 4)),
align = 'rrrr|r',
cgroup = cgroup,
n.cgroup = n.cgroup,
rgroup = c('1st period', '2nd period', '3rd period'),
n.rgroup = rep(5, 3),
tfoot = txtMergeLines('Δ<sub>int</sub> correspnds to the change since start',
'Δ<sub>std</sub> corresponds to the change compared to national average'),
cspan.rgroup = 1)
Average age in Sweden counties over a period of 15 years. The Norbotten county is typically known for having a negative migration pattern compared to Stockholm, while Uppsala has a proportionally large population of students. | |||||||||||||||||||||||||||||
Sweden | Norrbotten county | Stockholm county | Uppsala county | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | ||||||||||||||||||||||
Year | Age | Δint | Age | Δint | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | Age | Δint | Δstd | |||||||
1st period | |||||||||||||||||||||||||||||
1999 | 38.9 | 0.0 | 41.5 | 0.0 | 39.7 | 0.0 | 0.8 | 41.9 | 0.0 | 0.4 | 37.3 | 0.0 | -1.6 | 40.1 | 0.0 | -1.4 | 37.2 | 0.0 | -1.7 | 39.3 | 0.0 | -2.2 | |||||||
2000 | 39.0 | 0.1 | 41.6 | 0.1 | 40.0 | 0.3 | 1.0 | 42.2 | 0.3 | 0.6 | 37.4 | 0.1 | -1.6 | 40.1 | 0.0 | -1.5 | 37.5 | 0.3 | -1.5 | 39.4 | 0.1 | -2.2 | |||||||
2001 | 39.2 | 0.3 | 41.7 | 0.2 | 40.2 | 0.5 | 1.0 | 42.5 | 0.6 | 0.8 | 37.5 | 0.2 | -1.7 | 40.1 | 0.0 | -1.6 | 37.6 | 0.4 | -1.6 | 39.6 | 0.3 | -2.1 | |||||||
2002 | 39.3 | 0.4 | 41.8 | 0.3 | 40.5 | 0.8 | 1.2 | 42.8 | 0.9 | 1.0 | 37.6 | 0.3 | -1.7 | 40.2 | 0.1 | -1.6 | 37.8 | 0.6 | -1.5 | 39.7 | 0.4 | -2.1 | |||||||
2003 | 39.4 | 0.5 | 41.9 | 0.4 | 40.7 | 1.0 | 1.3 | 43.0 | 1.1 | 1.1 | 37.7 | 0.4 | -1.7 | 40.2 | 0.1 | -1.7 | 38.0 | 0.8 | -1.4 | 39.8 | 0.5 | -2.1 | |||||||
2nd period | |||||||||||||||||||||||||||||
2004 | 39.6 | 0.7 | 42.0 | 0.5 | 40.9 | 1.2 | 1.3 | 43.1 | 1.2 | 1.1 | 37.8 | 0.5 | -1.8 | 40.3 | 0.2 | -1.7 | 38.1 | 0.9 | -1.5 | 40.0 | 0.7 | -2.0 | |||||||
2005 | 39.7 | 0.8 | 42.0 | 0.5 | 41.1 | 1.4 | 1.4 | 43.4 | 1.5 | 1.4 | 37.9 | 0.6 | -1.8 | 40.3 | 0.2 | -1.7 | 38.3 | 1.1 | -1.4 | 40.1 | 0.8 | -1.9 | |||||||
2006 | 39.8 | 0.9 | 42.1 | 0.6 | 41.3 | 1.6 | 1.5 | 43.5 | 1.6 | 1.4 | 37.9 | 0.6 | -1.9 | 40.2 | 0.1 | -1.9 | 38.5 | 1.3 | -1.3 | 40.4 | 1.1 | -1.7 | |||||||
2007 | 39.8 | 0.9 | 42.1 | 0.6 | 41.5 | 1.8 | 1.7 | 43.8 | 1.9 | 1.7 | 37.8 | 0.5 | -2.0 | 40.1 | 0.0 | -2.0 | 38.6 | 1.4 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
2008 | 39.9 | 1.0 | 42.1 | 0.6 | 41.7 | 2.0 | 1.8 | 44.0 | 2.1 | 1.9 | 37.8 | 0.5 | -2.1 | 40.1 | 0.0 | -2.0 | 38.7 | 1.5 | -1.2 | 40.5 | 1.2 | -1.6 | |||||||
3rd period | |||||||||||||||||||||||||||||
2009 | 39.9 | 1.0 | 42.1 | 0.6 | 41.9 | 2.2 | 2.0 | 44.2 | 2.3 | 2.1 | 37.8 | 0.5 | -2.1 | 40.0 | -0.1 | -2.1 | 38.8 | 1.6 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2010 | 40.0 | 1.1 | 42.1 | 0.6 | 42.1 | 2.4 | 2.1 | 44.4 | 2.5 | 2.3 | 37.8 | 0.5 | -2.2 | 40.0 | -0.1 | -2.1 | 38.9 | 1.7 | -1.1 | 40.6 | 1.3 | -1.5 | |||||||
2011 | 40.1 | 1.2 | 42.2 | 0.7 | 42.3 | 2.6 | 2.2 | 44.5 | 2.6 | 2.3 | 37.9 | 0.6 | -2.2 | 39.9 | -0.2 | -2.3 | 39.0 | 1.8 | -1.1 | 40.7 | 1.4 | -1.5 | |||||||
2012 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.6 | 2.7 | 2.4 | 37.9 | 0.6 | -2.3 | 39.9 | -0.2 | -2.3 | 39.1 | 1.9 | -1.1 | 40.8 | 1.5 | -1.4 | |||||||
2013 | 40.2 | 1.3 | 42.2 | 0.7 | 42.4 | 2.7 | 2.2 | 44.7 | 2.8 | 2.5 | 38.0 | 0.7 | -2.2 | 39.9 | -0.2 | -2.3 | 39.2 | 2.0 | -1.0 | 40.9 | 1.6 | -1.3 | |||||||
Δint correspnds to the change since start Δstd corresponds to the change compared to national average |
The ztable
package¶
The package can also export to \LaTeX.
Example 1¶
library(ztable)
options(ztable.type='html')
# given the data in the first row
zt <- ztable(out_mx,
caption = 'Average age in Sweden counties over a period of
15 years. The Norbotten county is typically known
for having a negative migration pattern compared to
Stockholm, while Uppsala has a proportionally large
population of students.',
zebra.type = 1,
zebra = 'peach',
align=paste(rep('r', ncol(out_mx) + 1), collapse = ''))
# zt <- addcgroup(zt,
# cgroup = cgroup,
# n.cgroup = n.cgroup)
# Causes an error:
# Error in if (result <= length(vlines)) { :
zt <- addrgroup(zt,
rgroup = c('1st period', '2nd period', '3rd period'),
n.rgroup = rep(5, 3))
print(zt)